## INSTITUTO POLITECNICO NACIONAL

### ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA

### PROBLEMARIO PARA EL SEGUNDO DEPARTAMENTAL

#### SUSTANCIA PURA

## Complete esta tabla para el H2O:

| T, °C | P, kPa | v, m³/kg | Descripción de fase |
|-------|--------|----------|---------------------|
| 50    |        | 7.72     |                     |
|       | 400    |          | Vapor saturado      |
| 250   | 500    |          |                     |
| 110   | 350    |          |                     |

## Complete esta tabla para el H<sub>2</sub>O:

| T, °C | P, kPa | h, kJ/kg | X        | Descripción de fase |
|-------|--------|----------|----------|---------------------|
|       | 200    |          | 0.7      |                     |
| 140   |        | 1 800    |          |                     |
|       | 950    |          | 0.0      | )                   |
| 80    | 500    |          |          |                     |
|       | 800    | 3 162.2  | = 4,4,4, |                     |

## 3-24E Complete esta tabla para H<sub>2</sub>O:

| T, °F | P, psia | u, Btu/lbm | Descripción de fase |
|-------|---------|------------|---------------------|
| 300   |         | 782        |                     |
|       | 40      |            | Líquido saturado    |
| 500   | 120     |            |                     |
| 400   | 400     |            |                     |

# Complete esta tabla para el refrigerante 134a:

| The second second second |            |                      |
|--------------------------|------------|----------------------|
| P, kPa                   | v, m³/kg   | Descripción de fase  |
| 320                      |            |                      |
|                          | 0.0065     |                      |
| 550                      |            | Vapor saturado       |
| 600                      |            |                      |
|                          | 320<br>550 | 320<br>0.0065<br>550 |

| P, kPa | T, °C  | v, m³/kg | h, kJ/kg | Descripción de<br>la condición y<br>calidad<br>(si es aplicable) |
|--------|--------|----------|----------|------------------------------------------------------------------|
| 200    |        |          | 2 706.3  |                                                                  |
|        | 130    |          |          | 0.650                                                            |
|        | 400    |          | 3 277.0  |                                                                  |
| 800    | 30     |          |          |                                                                  |
| 450    | 147.90 |          |          |                                                                  |
|        |        |          |          |                                                                  |

#### Complete esta tabla para el refrigerante 134a:

| P, psia | h, Btu/lbm                 | X           | Descripción de fase |
|---------|----------------------------|-------------|---------------------|
| 80      | 78                         |             |                     |
|         |                            | 0.6         |                     |
| 70      |                            |             |                     |
| 180     | 129.46                     |             |                     |
|         |                            | 1.0         | 20212- 2021         |
|         | P, psia<br>80<br>70<br>180 | 80 78<br>70 | 80 78<br>0.6        |

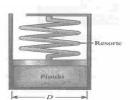
Un dispositivo de cilindro-émbolo contiene 0.005 m³ de agua líquida y 0.9 m³ de vapor de agua, en equilibrio a 600 kPa. Se transmite calor a presión constante, hasta que la temperatura llega a 200 °C.

- a) ¿Cuál es la temperatura inicial del agua?
- b) Calcule la masa total de agua.
- c) Calcule el volumen final.
- d) Indique el proceso en un diagrama P-v con respecto a las líneas de saturación.



Un dispositivo de cilindro-émbolo contiene  $0.85~{\rm kg}$  de refrigerante  $134{\rm a}$ , a  $-10~{\rm ^oC}$ . El émbolo tiene movimiento libre, y su masa es  $12~{\rm kg}$ , con diámetro de  $25~{\rm cm}$ . La presión atmosférica local es  $88~{\rm kPa}$ . Se transfiere calor al refrigerante  $134{\rm a}$  hasta que su temperatura es  $15~{\rm ^oC}$ . Determine a) la presión final, b) el cambio de volumen del cilindro y c) el cambio de entalpía en el refrigerante  $134{\rm a}$ .




10 kg de refrigerante 134a, a 300 kPa, llenan un recipiente rígido cuyo volumen es de 14 L. Determine la temperatura y la entalpía total en el recipiente. Ahora se calienta el recipiente, hasta que la presión es de 600 kPa. Determine la temperatura y la entalpía total del refrigerante, cuando el calentamiento se termina.



Un dispositivo de cilindro-émbolo contiene 0.8 kg de vapor de agua a 300 °C y 1 MPa. El vapor se enfría a presión constante, hasta que se condensa la mitad de su masa.

- a) Muestre el proceso en un diagrama T-V.
- b) Calcule la temperatura final.
- c) Determine el cambio de volumen.

Un dispositivo de cilindro-émbolo cargado por resorte se llena inicialmente con 0.2 lbm de una mezcla de líquido y vapor de refrigerante 134a cuya temperatura es -30°F, y cuya calidad es 80 por ciento. En la relación F = kx, la constante del resorte es 37 lbf/pulg, y el diámetro del pistón es 12 pulg. El refrigerante 134a experimenta un proceso que aumenta su volumen en 40 por ciento. Calcule la temperatura final y la entalpía final del refrigerante 134a.



Un kilogramo de agua llena un depósito de 150 L a una presión inicial de 2Mpa. Después se enfría el depósito a 40 °C. Determine la temperatura inicial y la presión final del agua.



Un contenedor rígido de 1.348 m³ se llena con 10 kg de refrigerante 134a a una temperatura inicial de -40 °C. Luego se calienta el contenedor hasta que la presión es de 200 kPa. Determine la temperatura final y la presión inicial.